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SUMMARY 

A perturbation solution of the fully developed flow through a pipe of circular cross-section, which rotates 
uniformly around an axis oriented perpendicularly to its own, is considered. The perturbation parameter is 
given by R = 2Ra2/v in terms of the angular velocity R, the pipe radius a and the kinematic viscosity v of 
the fluid. The two coupled non-linear equations for the axial velocity w and the streamfunction 4 
of the transverse (secondary) flow lead to an infinite system of linear equations. This system allows first the 
computation of a given order q5,, n 2 1, of the perturbation expansion 4 = En"=, R"4,  in terms of 0,- the 
( n  - 1)-th order of the expansion w = . . . , 4,- I .  Then it permits the 
computation of w, from a,,, . . . , a,- and dl, . . . ,4,. The computation starts from the Hagen-Poiseuille 
flow wo, i.e. the perturbation is around this flow. 

The computations are performed analytically by computer, with the REDUCE and MAPLE systems. The 
essential elements for this are the appropriate co-ordinates: in the complex co-ordinates chosen the two- 
dimensional harmonic (Laplace, A) and biharmonic (A*)  operators are ideally suited for (symbolic) 
quadratures. Symmetry considerations as well as analysis of the equations for w,, 4" and of the boundary 
conditions lead to general (polynomial) formulae for these functions, with coeffcients to be determined. Their 
determination, order by order, implies, in complex co-ordinates, only (symbolic) differentiation and 
quadratures. The coefficients themselves are polynomials in the Reynolds number c of the (unperturbed) 
Hagen-Poiseuille flow. They are tabulated in the paper for the orders n 5 6 of the perturbation expansion. 

KEY WORDS Computer algebra Pipe flow Rotating pipe Perturbation expansion 

R"w,, and of the lower orders 

1. INTRODUCTION 

The flow of a viscous fluid through a straight pipe which rotates about a n  axis perpendicular t o  its 
own is of importance in many fields of engineering. It gives on the practical side, for example, 
important background to the measurement of mass flow rate by the Coriolis effect.' The 
instruments which exploit the inertial (Coriolis) reaction of the flowing fluid on the forcedly 
vibrating pipe are now required to work with a n  accuracy of a fraction of a per cent. By this, one is 
forced in the analysis of the instrument already to the level of the finer flow effects, those produced 
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by the secondary flow of the fluid on the vibration of the pipe. On the other hand the flow is also 
of considerable interest from the point of view of basic fluid mechanics, in particular related to the 
nature of the secondary flow and to its stability. 

At present computational results on this flow are available mainly n~merically;’.~ analytic 
results4. ’ are, at present standards, very modest, although they are expected to offer important 
insight in addition to numerical work. The reason for this lies in the fact that their derivation by 
hand gets very tedious and laborious; it becomes also very hard to avoid computational mistakes. 

It is the aim of the present paper to approach the flow in a rotating pipe anew in an analytic 
way, from a perspective which takes into account the advanced symbolic computation facilities 
(e.g. REDUCE, MAPLE or MACSYMA) available now. These facilities allow one to develop 
systematically the idea of perturbation4 of the Hagen-Poiseuille flow due to rotation and to 
devise an analytic scheme for the computation of the flow by successive approximations. The 
scheme is described in the paper. 

The structure of the paper is as follows. In Section 2 the equations of the fluid flow in a rotating 
reference frame, which is the natural one to be chosen for this flow, are reviewed and formulated, 
in terms of a streamfunction, for a fully developed flow (i.e. translationally invariant along the 
pipe axis) in a circular pipe, when the pipe rotates uniformly around an axis perpendicular to its 
own. Then (Section 3) the coupled nonlinear equations for the streamfunction 4 and the axial 
velocity w are transformed for convenience to complex co-ordinates.* The perturbation proced- 
ure around the Hagen-Poiseuille solution for the non-rotating pipe, with a dimensionless 
rotation number R as perturbation parameter, is then considered for the solution of this system. 
The two non-linear equations thereby lead to a (doubly) infinite system of linear equations for the 
various orders w,, 4, ( n  = 0,1,2, . . . ) in the perturbation expansion of w, 4. The structure of the 
equations is governed by the Laplace operator A for w and by its square A’, the biharmonic 
operator, for 4. These operators take in complex co-ordinates particularly simple forms which are 
most suitable for symbolic integration of the equations. 

The solutions have symmetry properties. One obvious symmetry is that with respect to 
reflection in the central pipe plane perpendicular to the axis of rotation. Although there is no 
reflection symmetry of the flow with respect to the plane of the pipe and rotation axes, the various 
orders w,, 4, of perturbation do have such symmetries, which are alternating with n: w2, and 
42n+ are symmetric whereas wZn+ and bZn are antisymmetric. However, if one changes the sign 
of rotation ( R  -, - R )  simultaneously with this reflection, then w behaves symmetrically and 4 
antisymmetrically under this combined operation. 

In Section 4 the method of solution of the system of equations for w,, 4, ( n  = 0, 1,2, . . . ) is 
described in such a way that it can be performed symbolically by a computer, e.g. with 
REDUCE6*7 or MAPLE.8 Thereby +,,, for a given order n 2 1, is computed essentially by 
quadratures from w,- (ao is the Hagen-Poiseuille sollution) and . . . , 4,- (40 = 0), and 
afterwards w, is computed similarly from wo, . . . ,on- and 41, . . . , 4,. Since the start function 
oo is a (second-order) polynomial in the complex variables, and because differentiation and 
quadratures keep the polynomial structure, the functions on, #,, are polynomials in these 
variables. Several of their properties can be derived directly from the equations and are exploited 
then during the computations. In fact, the information on the polynomials on, 4, from their 
equations leads, together with the boundary conditions, to certain structure formulae for them, 
wherein the coefficients have to be determined then, analytically, by the equations. The results of 
the computation (Section 5 )  are conveniently given by tables of these polynomial coefficients. 

* The notation q5 of Barua4 is followed here for the streamfunction instead of the conventional notation 4. 



FLOW IN A ROTATING PIPE 269 

They are again polynomials, in the Reynolds number of the Hagen-Poiseuille flow. For the 
purpose of illustration, the coefficients of wo,  . . . , o6 and 4 , ,  . . . , 46 are presented in Tables I 
and I1 respectively. 

2. FLUID EQUATIONS IN A ROTATING FRAME 

In the present section the equations of the fluid flow in the rotating reference frame will be briefly 
reviewed. The inertial reference frame will be characterized by the orthogonal unit vectors e l ,  e2 ,  
e3 and the rotating frame by the angular velocity R = fie, oriented along the el-axis. The co- 
ordinate axes of this frame will be denoted by f ,  ( t ) ,  f2(  t ) ,  f,( t )  with f, ( t )  = e l .  To simplify the 
problem, a stationary flow in the rotating frame will be considered, i.e. 8 VJat  = 0, where 

v =  Ffi (1) 

is the velocity field; the co-ordinate vector will be X = Xifi (summation over repeated indices is 
assumed). The pipe is considered to extend along the f,-axis and to have a radius a. 

The dynamical equations describing the flow areg 

( V . V ) V  - 2V x Q = - Vx + vAV, (2) 
where the notation 

x(X)  = ~ P(x) - - :(R x X)Z 
P (3) 

has been used; the centrifugal force R x (R x X )  has been included in the pressure term by the 
corresponding potential. Herein P(X) is the pressure and p and v are the fluid density and 
kinematic viscosity respectively. 

An additional assumption on the flow will be made, namely that it is translationally invariant, 
i.e. the velocity field is independent of the axial co-ordinate X,; therefore the pressure term will be 
of the form 

V 2  V 2  
AX) = - 4CTX3 a + 3 f i ( X l , X 2 ) ,  a (4) 

with c a dimensionless constant and I) a dimensionless function. The significance of c is given by 
c = 2wma/v, where w, is the mean Hagen-Poiseuille velocity; c is thus the mean Reynolds 
number of the unperturbed flow.* The equations of motion for the Cartesian components 

are then written with respect to the co-ordinates Xi as 

a V 2  

8x2 a3 
+ V2 -) V, + 2R V2 = + 4c- + VA V,, (7) 

* The unconventional notation c for the Reynolds number Re follows B a r ~ a ; ~  his parameter c is equal to - 4c of the 
present paper. 
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with the boundary conditions requiring that the fluid velocity vanishes on the pipe surface in the 
rotating frame. 

One has to add, for an incompressible fluid ( p  = constant), the continuity equation 

av, a v2 - o. +-- ax, ax, 
In the following, dimensionless co-ordinates xi = Xi/a will be used and dimensionless func- 

tions, the streamfunction 4(xl ,  x,) of the transverse flow and the velocity component along the 
f,-axis, w(x,, x,), will be introduced by 

V v, = - w ;  
a 

by this definition the continuity equation will be automatically satisfied. 

co(xl, x2) with respect to the dimensionless Cartesian co-ordinates xl, x, is ~ b t a i n e d : ~  
From (5H7) the following system of equations for the streamfunction &(xl, x2)  and velocity 

where R = 2SZa2/v is a dimensionless constant (a Taylor number) and A2 = AA, with 

a 2  a 2  

ax: ax:’ 
A = - + -  

is the transverse Laplace operator. The properties of 4 and o will be discussed in the following 
sections. The pressure x(xl, x,) will not be considered in this paper; it can be obtained directly by 
quadrature from equations (5 )  and (6). 

3. THE PROBLEM IN TERMS O F  COMPLEX CO-ORDINATES 

The computation of the flow can be approached at present generally only by approximation 
procedures of either an analytic or a numerical nature. The geometry of the problem suggests the 
use of cylindrical co-ordinates. Formulating the problem in these co-ordinates, Barua has sought 
a solution by perturbation of the Hagen-Poiseuille since the expansion parameter is 
R = 2Ra2/v,  the orders of the perturbation expansion needed for the description of the flow will 
increase with the increase of the angular velocity. The two lowest orders of the expansion have 
been calculated almost completely, analytically, by Barua; higher-order calculations have been 
performed, in certain simplifying limit situations, only by numerical methods.2* The difficulties 
of the analytic calculation in the cylindrical co-ordinates are, however, considerable. Therefore an 
alternative approach is introduced in the present paper in order to simplify the form of equations 
(12) and (13). This then allows the extension of the analytic calculation of the perturbation 
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solution to arbitrary higher orders by means of computer algebra (symbolic computation). The 
procedure is based on the observation that the use of the dimensionless complex variables 

z = x1 + ix,, 

z* = x1 - ix, 
(15) 

(16) 

leads to a tremendous simplification of the form of the Laplace operator." One has, obviously, 
z = reie and z* = re-'*, where r, 0, x3 are dimensionless cylindrical co-ordinates. 

In the variables z,  z* the system of equations (12), (13) is 

where the notation 

has been used; the mentioned simple form of the Laplace operator is 

a 2  

azaz*?  
A = 2 2 -  

and its square, accordingly, 

On the pipe surface (zz* = 1) the boundary conditions 

- a4 = 0 (zz* = l), aZ  

w = 0 (zz* = 1) (24) 

4 = o  (zz* = l), (25 )  

have to be satisfied. The conditions (22) and (23) are, up to an irrelevant constant, equivalent to 

- = 0 
a r  

(zz* = 1). 84  

Equations (17) and (18) show the following symmetry properties of the solutions 4(z ,  z*), w(z, z*) 
with respect to the reflection x1 -+ - xl, x2 -, x2, i.e. z -, - z*, z* -+ - z: 

4( - z*, - z)  = - 4(z ,  z*), 

w( - z*, - z)  = w(z, z*). 
(27) 

(28)  
There is also a symmetry with respect to the reflection x1 -+ x i ,  x2 -+ - x2, i.e. z + z*, z* + z, 
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and a simultaneous change of the sense of rotation (a -+ - a): 
4 ( ~ * ,  Z ;  - R )  = - 4 ( z 9  z * ; R ) ,  
o(z*,  Z ;  - R )  = W ( Z ,  z*;  R). 

These relations connect in fact the flow fields in two oppositely rotating pipes. Therefore the 
dependence of 4 and o on the Taylor numbers R has been explicitly indicated here. 

Finally, there is as an additional general property of 4 ( z ,  z*)  and w(z ,  z*),  their reality: 

4*(z ,  z* )  = 4 ( z ,  z*), 

w*(z ,  z* )  = 0 ( z ,  z*). 
(31) 

(32) 
Following B a r ~ a , ~  the solutions 4, o of equations ( 1  7), ( 1  8) will be sought as series expansions 

cL1 

~ ( z T  z * )  = C R"4n(z, z*), (33) 
n = O  

wherein the lowest order is given by the Hagen-Poiseuille flow in a non-rotating pipe: 

40 = 0, (35) 
0 0  = c( l  - ZZ,). (36) 

This perturbation procedure produces from the two non-linear equations (17), (18) an infinite 
system of linear equations for the functions 4 n ( z ,  z* )  and o, , (z ,  z*), n 2 1 :  

k =  1 

with the boundary conditions 

= o  atb, 
d Z  

or equivalently 

and 

0, = 0 

The functions &(z,  z*), o n ( z ,  z* )  have symmetry properties which follow from (27H30):  

4 n (  7 z* ,  - Z )  = - + n ( Z ,  z*) ,  

o n (  - z*,  - z )  = o,(z ,  z* )  
(44) 

(45) 
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and 

respectively. From reality of 4, w also their reality follows: 

4 , * ( z ,  z * )  = d J n ( Z ,  z*), 

o n  (29 z * )  = % ( Z ,  z*). * 
(48) 

(49) 

The properties (44)-(49) restrict the form of the functions 4,,(z, z!), w,(z, z * )  and therefore can 
be used either as part of the input to the calculations or as an additional test for their correctness 
in each of the successive orders of approximation n. 

4. SOLUTION OF THE PROBLEM 

For each n 2 1 the solutions of the system of (non-homogeneous) equations (37), (38) can be split 
as 

where ‘4h”(z, z*), wb’)(z, z * )  are particular solutions of the non-homogeneous equations and 
$!,”(z, z*) ,  wio)(z, z * )  are then solutions of the corresponding homogeneous equations. Because of 
the simple form of the operator A (or A 2  respectively) in the co-ordinates z , z* ,  particular 
solutions #&‘)(z, z*), w‘,“(z, z* )  can be found directly by quadratures from (37) and (38) in terms of 
the functions &(z,  z*) ,  w,(z, z* )  calculated previously (at the steps k < n). 

Then wio)(z, z * )  is harmonic, the solution of the Dirichlet problem 

Aw‘,O’(z, z * )  = 0, 
with the boundary condition 

(53) 

(54) 

0, (0 )  ( z ,  z * )  = - ob”(z, z*)  (zz* = 1). 

It must have, as a real function, the following convergent series expansion: 

olp) (z , z , )  = a ,  + a , z  + a 2 z 2  + . . . + a: + a y z ,  + a:z: + .  . . 
where a,, a , ,  a 2 ,  . . , are coefficients to be determined. Their determination is possible due to the 
uniqueness of the solution of the Dirichlet problem.” 

On the other hand 4io)(z, z*)  is a biharmonic function, the solution of the biharmonic equation 

( 5 5 )  2 (0) A 4 n  ( z , z * )  = 0, 
with the boundary conditions 

By the equivalence of (39), (40) and (4u, (42), ~ ‘ , O ’ ( Z ,  z * )  is actually the solution of a 
Dirichlet-Neumann problem’O*’l for the biharmonic equation (55) and can thereby be re- 
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presented as a superposition of the following kind, af two harmonic functions u l ( z ,  z*), u,(z, z*), 
each of the form (54):’O 

+ p ’ ( Z ,  z* )  = zz*u(p)(z, z*)  + u y ‘ ( z ,  z*). (58)  

The boundary conditions (56), (57) determine uniquely the coefficients for both functions 
ui0)(z, z*), ui0’(z, z*)  and consequently the function 4 io ) ( z ,  z*).l0, l 1  From the structure of 
equations (37), (38) and from the properties (44H49) one can derive more precise statements on 
the form of the functions w(nl)(z, z*)  and $:’(z, z*)  obtained. by quadratures. The function 
wb”(z, z*)  is a polynomial of z ,  z*, of degree 5n + 2, with the properties 

o y ’ ( z ,  z*) = mi”( - z*, - z), 

w!”(z, z* )  = ( - 1)”w(,1)(z*, z), 

0, ( z ,  z*)  = w:”*(z, z*), 

(59) 

(60) 

(61) (1) 

where bh’)(z, z*)  is a polynomial of z ,  z*,  of degree 5n, with the properties 

This implies that w\;(z, z,) contains only factors of the form z2’ + z:’ and (zz.,.)”, whereas 
w(:nl+ ( z ,  z,) contains only i(z2’ + - z f +  ’) and ( z z , )~ .  The highest possible value of I thereby 
turns out to be 1 = rn. 

The form of wbl)(z, z*)  is thus 
m S m - I + l  

w$?(z, z*)  = 1 ( Z Z I  + z?) 1 af)(zz*)k ,  (65) 
I = O  k = O  

with real coefficients at). 
Since wlp)(z, z* )  has the symmetry properties 

wlp’(z, z*)  = alp’( - z*, - z), 

o‘R’(z, z * )  = ( - lyo(R’(z*,  z), 

and is in addition harmonic, it has to be of the form (65), (66), but only with the terms k = 0, i.e. 

The boundary condition (53) leads to 



FLOW IN A ROTATING PIPE 275 

for n = 2m and to 

l > m  

for n = 2m + 1; it allows one to write w,(z, z * )  directly in terms of the coefficients u f )  of w!,')(z, z*) :  

rn 5 m - I f 1  

WZrn(Z, z * )  = c (z21 + 22,') 1 u p  ( ( zz * )k  - l), 
I = O  k=O 

5 m - I f 3  m 

w2m + (z, z * )  = i I = o  1 ( z Z 1 +  - z: + 

k=O 1 u p  ( ( zz * )k  - l), 

(74) 

(75) 

A similar situation, although somewhat more complicated, happens with b!,')(z, z*) .  The form 
of ~ Y ) ( z ,  z * )  turns out to be 

m 5 m - I  

5 m - I + 2  m 

4:;+ 1(z, z * )  = I = 0  1 (ZZ1+ + z f +  l )  k = O  1 cf)(zz*)&, (77) 

again with real coefficients cIf). The functions #!,')(z, z*)  have, because of (58), the same form, only 
the range of k is restricted to k = 0, 1, i.e. 

(b\: + 1 (z, z * )  = 1 ( z2 I  + + z:' + l )  (db" + d p  ZZ,). (79) 
I 

The two sets of coefficients d:), dy) are determined by the boundary conditions (56), (57) in terms 
of cp,: 

1 ( k  - l)#, 0 5 1 s m, 

l > m  
(80) 

and 

Therefore 

d p  + zz* d:" = - 1 c p  - (zz, - 1) 1 kcf'  
k k and consequently 
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It might be, from the formal point of view, convenient to change the definitions of the complex 
variables from z ,  z* to 

Z = x2 + ix,( = iz*), 

Z ,  = x2 - ix,( = -iz), 

z* = - 2 ,  

z = iZ,. 

In the polar co-ordinates r, 4 related to 2, 2, by 

Z = reip, Z ,  = re-@, (87) 

z = re", z* = 9 (88) 

instea$ of the co-ordinates of Barua, r, 6 (6 = n/2 - cp), which are related to z ,  z* by 
re- i0 

the symmetry (27), (28) expresses the fact that the streamfunction 4 is an odd (sine) Fourier series 
in cp whereas o is an even (cosine) series. For numerical work2s3 this was of more relevance; here, 
however, it is not so important, because within one given order on, 4, the type of series is still of 
the same simplicity-the changes take place from one order n to the next. 

This presentation is framed for application to the analytic calculation, by computer, of higher 
orders of the perturbation expansion. The calculations reported here have been performed partly 
with REDUCE and partly with MAPLE; the results are given in the following section. 

5. RESULTS AND COMMENTS 

The input of the computations is given by 

40 = 0, (89) 

(90) oo = c(1 - zz,) = c(I - r2), 

the functions of the Hagen-Poiseuille flow. The actual procedure for the computation of the terms 
of higher order in the expansions of q5 and o is displayed essentially by equations (65), (66) and 
(76), (77), which represent the parts oL1)(z ,  z*) ,  &')(z, z * )  of o,(z ,  z*) ,  ~ J z ,  z * )  which are obtained 
by quadratures. These functions can be computed even separately for various pieces of the RHS of 
(37), (38) and then added in the end. All information on the flow is stored in the coefficients up) and 
elf). Since the integration procedures of REDUCE and MAPLE omit integration constants, the 
lowest power of zz* is k = 1 in o:)(z ,  z * )  and k = 2 in @;"(Z, z*); as a consequence, 

ag' = 0, 
e ( I )  = ( 1 )  = 0 
0 c1 . 

cp)  = 0 
Also, because of (63) one has 

(93) 
for even order n = 2m. From (74), (75) and (83), (84) it can also be seen that the functions o,(z ,  z*)  
have a factor 1 - z z * ,  whereas the &(z, z* )  have a factor (1 - zz,)'; these factors reflect their 
behaviour near the boundary. 

For the orders n 5 6  the coefficients are collected in Tables I and 11. These tables display the 
fact, which follows from equations (37), (38), that the coefficients up) of o,(z,,z*) are polynomials in 
c of degree at most n + 1, with the parity of cnf l ,  whereas the coefficients c f )  of 4"(z ,  z * )  are 
polynomials in c, of degree n at most, with the parity of c". There are evidently no terms of degree 
zero in these polynomials. It is of course possible to present the results in terms of the numerical 
coefficients of these polynomials instead of by the polynomials themselves as in Tables I and 11. 
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Table I. Coefficients ci') = c ( l ) [k ]  of 

n = 1; 

c(O)[2] = 1/192+c; 

n = 2: 

~ ( 1 ) [ 2 ]  = -1/442368+~++2; 
C(1)[31 = 0; 
c(1)[4] = 1/8847360+c++2; 

n = 3; 

[2] = -17/884736+~ 
- 6 0 7 7 / 3 5 6 7 2 5 5 5 5 2 0 0 + ~ + * 3 ;  

[3] = 31/2548039680+c++3 
+1/147456+c: 

[4] = -1/983040+~ 
-607/101921587200+~++3; 

r s i  = 11/6370099200+~++3: 
i6j = -1/4246732800+~++3;' 
[7] = 11/1664719257600+~++3; 
[2] = 1/737280+c 

+19/33973862400+~++3: 
31 = -1/4423680+~ 

-7/10192158720+~++3; 
41 = 1/5096079360+c++3; 
51 = 1/79272345600+c++3; 
61 = -29/4280706662400+~++3; 

21 = 2 9 8 7 7 2 9 / 1 5 3 4 2 0 5 2 6 7 8 0 4 1 6 0 0 0 + c + + 4  
+13213/1426902220800+~++2: 

c( 1) [ 31 = -24739/1643791358361600+c~+4 
+1/8493465600+c++2; 

+77153/8218956791808000+~++4; 
C(1)[4] = -149/101921587200+~++2 

C(1)[51 = - 3 5 7 7 9 / 8 2 1 8 9 5 6 7 9 1 8 0 8 0 0 0 + ~ + + 4  . . .  . 
+1/1981808640+c++2; 

c(1)[6] = 48329/32875827167232000+~++4 
-1/16986931200+~++2: 

c( 1) [ 71 = - 7 0 1 / 1 9 1 7 7 5 6 5 8 4 7 5 5 2 0 0 + ~ + + 4 ;  
C(l)[8] = 97/1598130487296000+~++4; 

c(2)[2] = 49/33973862400+~++2 

c(2)[3] = 761/7191587192832000+~++4 

c(2)[4] = 11/31708938240+~++2 

C(1)[9] = -17807/3797158037815296000+~*+4; 

-11269/32875827167232000+~++4; 

-47/44590694400+~++2; 

+209/1643791358361600+~++4; 
C(2)[5] = -5113/49313740750848000+~++4 

-11/285380444160+~++2; 
C(2)[6] = 1/44030125670400+~+*4; 

c(2)[8] = - 1 9 / 9 6 4 3 5 7 5 9 6 9 0 5 4 7 2 0 0 + ~ + + 4 ;  

n = 5; 

~ ( 0 1 r 2 1  = 2875009/2876634877i3280000+~++3 

C(2)[7] = -13/31642983648460800+~++4; 

. . .  - 
+5278042381/87486521191264419840000+c+*5  
+677/20384317440+c: 

c( 0) [ 31 = -454123/6575165433446400+~*+3 
-1087138037/17497304238252883968000+c++5 
-17/113246208O+c: 

[41 = 909i7/27396~:26j93600o'cz*3 
+62102173/1190292805323325440000+~++5 
+91/22649241600+c; 

-771877/82189567918080000+c++3 
-1/1698693120+c; 

161 = 1/23781703680+c 
+51830759/2651106702765588480000+c++5 
+3491/4109478395904000+~*+3: 

[5] = - 9 3 4 6 1 4 8 2 3 / 2 6 5 1 1 0 6 7 0 2 7 6 5 5 8 8 4 8 0 0 0 0 0 + ~ + + 5  
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Table 1. (Continued) 

c(0)[7] = 593/1917756584755200*~**3 

c [ O ) [ 8 1  = 20512459/6362656086637412352000*~**5 
-82534003/9278873459679559680000*~**5; 

. .. - 
-37/359579359641600*~**3; 

c(O)[9] = 169/17046725197824000*~**3 
-1517407/1704282880349306880000*~**5: 

c (  0)[ lo] = 3841919/21871630297816104960000*c~~5; 

c(O)[12] = 4012847/3127643132587703009280000*c**5; 
c(l)[Z] = 16972663/2160161017068257280000*c**5 

-21157/9132174213120000*~**3 
-2123/594542592OOO*c; 

~(0)[11] = -753619/34369704753711022080000*~**5; 

c(1)[3] = 11111/8218956791808000*~**3 
-246782603/29162173730421473280000*~**5 
+121/101921587200*c: 

c(1)[5] = 1/63417876480*c 
-18383/10958609055744000*c**3 
-21024973/3534808937020784640000*c**5; 

+35671/49313740750848000*~**3; 

-4351/28766348771328000*~**3: 
c(l)[8] = 7033/562541931528192000*~**3 

+3727079/11664869492168589312000*~**5; 
c(1)[9] = -2998579/52491912714758651904000*~**5; 
c(1)[10] = 874039/142165596935804682240000*~**5; 

c(2)[2] = 6984013/87486521191264419840000*c**5 

+1/13212057600*c; 
c(2)[3] = 15929/30684105356083200*~**3 

-21575921/122481129667770187776000*~**5 
-1/47563407360*c; 

c(2)[4] = -3127/6575165433446400*~**3 
+2239/14427791579676672000*~**5 
+1/570760888320*c; 

c(2)[5] = 36643/164379135836160000*~**3 

c(1)[6) = 3075869/994165013537095680000*~**5 

~ ( 1 ) [ 7 ]  = -268411/227237717379907584000*~**5 

c(l)[ll] a -129929/405435220890998538240000+~**5; 

-15787/57532697542656000*C**3 

-2043919/39766600541483827200000*~**5~ 

-1123/22602131177472000*~**3~ 
~ ( 2 ) [ 6 ]  = -47/8416211754811392000*~**5 

c(2)[7] = 11/2739652263936000*~**3 
+58147/7953320108296765440000*c**5; 

~ ( 2 ) [ 8 ]  = -419/315923548746232627200*~**5; 
C(2)[9] = 839/40827043222590062592000*~**5; 
C(2)[10] = 1831/255169020141187891200000*c**5; 

n = 6; 

c(l)[2; = -2579669/109586090557440000*~**2 
-54501198151/388828983072286310400000*c**4 
-96737~55005013/1008852568847489482673356800000*c**6; 

c(1)[3] = 31468125433/291621737304214732800000*c**4 
+42833278281349/403541027533995793069342720000*c**6 
-6299/6849130659840000*~**2; 

-5761855013/79533201082967654400000*~**4 
141 = -4141280096641/4076171995343391~491852800000*c**6 

+262397/46965467381760000*~**2; 

+11800307/294567411418398720000*~**4 
-379/142056043315200*~**2; 

[6] = -12768373/706961787404156928000*~**4 
-2072768179481/37626203033939001684787200000*c**6 
+13693/21917218111488000*~**2: 

[ 5 ]  = 230198402261/2821965227545425126359040000*c**6 

c(1)[7] = -937/11506539508531200*~**2 
+1151162782619/37038293611533704783462400000*c**6 
+370544317/55673240758077358080000*c**4; 

-147164855797/10261691736528818641305600000*c**6 
+1649/306841053560832000*~**2; 

+18657306517/3527456534431781407948800000*c**6; 

~(1)[8] = -558791/294567411418398720000*~**4 

c(1)[9] = 4153243/10935815148908052480000*c**4 

~ ( 1 ) [ 1 0 ]  = -206131/4374326059563220992000*~**4 
-18372099833/12094136689480333398681600000*c**6; 
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Table I .  (Continued) 

c( 1) [ 11.1 = 7495489/2780127228966847119360000*c**4 
+6739098343/20588827935663050666803200000*c**6; 

~(1)[12.] = -193720871/3880202187874959548743680000*~**6; 
c(1)1131 = 88270541/18215393604190782326046720000*c**6: 
cji j [14 j = -iii45938~983/4896297800806~822~~24i3583~~ooooo*~**~; 
C(2)[2] = -87161395479107/48424923304679495168321126400000*~**6 

+126392262617/159225468568101244108800000*c**4 
-3133409/575326975426560000*~**2; 

+86048879897/19454457250502552007475200000*c**6 
+656147/143831743856640000*~**2; 

c(2)[41 = 263218913/1088721152602401669120000*c**4 

~ ( 2 ) [ 3 ]  -993199567/3062028241694254694400000*~**4 

. . .  . 
-38293/19177565847552000*~**2 
-463018386223/733710959161810532853350~0000*c**6~ 

C(2)[5] = -62251/81156327635681280000*~**4 
+7703/16437913583616000*~**2 
+941549739773/169317913652725507581542400000*c**6; 

[6] = -1033/16437913583616000*~**2 

+15208027/17674044685103923200000*c**4; 

+5705219/3664889905903149514752000*c**6; 

+10317353/77765796614457262080000*~**4; 

-160191112349/47032753792423752105984000000*~**6 

97/23439247147008000*~**2 
17] = -6685771/14581086865210736640000*~**4 

[ 8 ]  zz -30205678093/56439304550908502527180800000*~**6 

~ ( 2 ) [ 9 ]  = -1530853/75821651699095830528000*~**4 
+43899959/320864850945398192209920000*c**6; 

c(2)[10] = 13017079/10615031237873416273920000*c**4 
-4758060007/183427739790452633213337600000*~**6; 

111 = 905158811/252213142211872370668339200000*c**G; 
121 = -760050311/2305948728794261674681958400000*c**6; 
131 = 1189275587/79273392965438284682955325440000*~**6; 
21 = -5761292857/171199223804422457665781760000*c**K .~ . ..- . 

+44129/10604426A1106235392000*~**4 
+14213/6:368210712166400*~**2; 

+3675388723/110056643874271579928002560000*c**6 

+418123451/112878609101817005054361600000*c**6 
+4457/65751654334464000*~**2; 

+15964691/145810868652107366400000*c**4; 

+206364931/8062757792986928932454400000*c**6 

31 = -12017/69039237051187200*~**2 

-4896931/244962259335540375552000*~**4; 
41 = -487603/7953320108296765440000*~**4 

[5] = -373/30136174903296000*~**2 
-12820470107/388020218787495954874368000000*~**6 

[6] = 19/21917218111488000*~**2 

[7] = 1044919/37910825849547915264000*~**4 
-971527/12498074455894917120000*~**4; 

-24611/3403112055481495977984000*~**6: 
C (  3) [ 81 = -331687/2445703197206035109511168000*C**6 

c(3)[9] = 97441/324949935853267845120000*~**4 

~(3)[10] = -6648899/91713869895226316606668800000*~**6; 
c(3)[11] = 158987/125644642274046309197414400000*c**6; 
C(3)[12] = 6313493/25329959882447735934198743040000*~**6; 

-833033/176917187297890271232000*~**4; 

+126630503/275141609685678949820006400000*c**6; 
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Table 11. Coefficients uf’ = u(r) [k]  of on 

n - 0; 
a(O)(l] = -1/2*c; 

n = 1; 

a(O)[ll = 1/768*c**2; 
a(O)[2] = -1/1152*c**2; 
a(0)[3] = 1/4608*c**2; 

n = 2; 

1/589824*c**3 
= +1/768*C; 

31 = 1/2304*c 

21 = -1/294912*~**3 
-1/768*C; 

+19/5308416*c**3; 
41 = -5/2359296*~**3; 

2; = -1/10616832*~**3; 
= 1/1474560*c**3; 

ij = -1/1152*c 
+17/26542080*c**3; 

ail\r21 = -23/35389440*c**3 , , I  - 
+1/3072*c; 

a(1)[3] = 1/2949120*c**3; 
a(1)[4] = -1/10616832*c**3; 
a(1)[5] = 1/77414400*c**3; 

n = 3; 

afOlfll = -13759/1997663109120*~**4 . ,. ~ 

-41/8847360*~**2; 
a(O)[2J = 12557/951268147200*~**4 

+41/10616832*c**2: 
a(0)[3] = -1/663552*c**2 

a(0)[4] = 1/4423680*c**2 
+109/8493465600*~**4; 

a(0)[5] = -1/88473600*c**2 

a(0)[6] = 59/25480396800*~**4; 
a(0)[7] = -4679/9988315545600*~**4; 

-1/393216O*c**2: 

+19/44236800*c**2; 

-8581/535088332800*~**4; 

-2597/382205952000*~**4; 

10553/239719573094400*~**4; :[!! [!; 1 -233/1630745395200*~**4 
a(l)[2] = 1553/7134511104000*~**4 

a(1)[3] = -19/101921587200*c**4 

a(l)[4] = 1/10569646080*c**4 
-7/26542080*~**2; 

+13/247726080*c**2: 
a(1)[51 = -157/5707608883200*c**4; 
a(1)[6] = 1/244611809280*~**4; 
a(1)[7] = -11/39953262182400*~**4; 

n = 4; 

a f O \ r 1 1  = -23497/2497078886400*C**3 
- , - , L - .  

-77/35389440*c 
-318853/51140175593472000*~**5; 

+8165509/460262580341248000*c**5 
0)[2] = 54491/2853804441600*c**3 

+49/17694720*c; 

-43259179/1380784741023744000*C**5 
0)[3] = -17/10616832+c 

-359/16721510400*~**3; 
O)[4] = 169387/4383443622297600*~**5 

+2407/163074539520*~**3 
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Table 11. (Continued) 

a(O)[5] = -1/19660800*c 
-27/4194304000*c**3 
-287417/8218956791808000*~**5; 
926227/39450992600678400*~**5 

= +4313/2446118092800*~**3; 
a(0)[7] = -101/356725555200*~**3 

a(0)[81 = 7529357/1841046321364992000*~**5 
-41633/3595793596416000*~**5; 

. . _  . 
+1187/53271016243200*~**3; 

a(0)[9] = -272143/276156948204748800*~**5; 
afOirlO1 = 67519/460261580341248000*~**5: 
aioj iiij = -7489/723268197679104000*~**5;' 
a(l)[l] = -301085189/45565896453783552000*~**5 

+11/5308416*c 
-43553/17122826649600*~**3: 

a(l)[2] = -103/70778880*c 
+47413907/3375251589169152000*~**5 
+20987/5707608883200*~**3: - ,  

a(1)[3] = 1/2211840*c 

a(1)[4] = 717281/37572373905408000*~**5 

-16910797/862990463139840000*~**5 
-32357/10701766656000*~**3; 

-1/17694720*~ 
+797/489223618560*~**3; 

= -1899391/143831743856640000*~**5 
-29/47563407360*~**3: 

= 1022501/157803970402713600*c**5 
+407/2853804441600*~**3; 

= -9203851/4142354223071232000*~**5 
-1973/119859786547200*~**3; 

= 470909/920523160682496000*c**5; 
= -411557/5695737056722944000*~**5; 

= -1/9830400*~ 
= 2227487/455658964537835520000*~**5; 

-127/856141332480*~**3; 

-569/6903923705118720*~**5 
31 - 1103/4280706662400*ctf3 

41 = 86503/1841046321364992000*~**5 
' -1/123863040*~; 

-4273/22830435532800*~**3; 
51 = -4567/295882444505088000*~**5 

+173/2853804441600*~**3; 
a(2)[6] = -1219/171228266496000*~**3 

+19813/5917648890101760000'c+*5; 
a(2)[7] = -1073/1518863215126118400*~**5; 
a(2)[8] = 1523/12150905721008947200*~**5; 
a(2)[9; = -13/1423934264180736000*c**S; 

n = 5; 

a(O)[l] = 15087160573/303772643025223680000*c**4 
+12919/1141521776640*~**2 
+667323147359359/21017761850989364222361600000*c**6; 

a(O)[Z] = -11533/1141521776640*~**2 

a(0)[3] = 673775311/5523138964094976000*~**4 
+74113/17122826649600*~**2 
+50521846099/349946084765057679360000*c**6; 

a(0)[4] = -287/407686348800*~**2 

-24579938672753/300253740728419488890880000*~**6 
-23084993/241089399226368000*~**4; 

-131031733387/699892169530115358720000*~**6 
-28355737/263006617337856000*~**4? -, ~. . ~ 

[5] = -1/27179089920*C**2 
+649999060793/3499460847650576793600000*c**6 
+66449911/986274815016960000*~**4; 

+1/28538044416*~**2; 

+25633669567/296923950709745909760000'c**6 
+8596747/920523160682496000*~**4: 

161 = -319408168483/2226929630323094323200000*~**6 
-12898177/431495231569920000*~**4 

[7] a -29/6658877030400*~**2 



282 H. RASZILLIER, I. GUIASU AND F. DURST 

Table 11. (Continued) 

a(O)[8] = -107238710987/2672315556387713187840000*~**6 
-21941419/11046277928189952000*~*+4; 
5400353723/381759365198244741120000*c**6 

a(0)[91 = +7429/28179280429056000*~**4; 
a(O)[lO] = -5284777/303772643025223680000*~**4 

a(O)[ll] = 3836772169/5774110398623451709440000*c**6; 
a(0)[12] = -5687048243/75063435182104872222720000*c**6: 
a(0)[13] = 37884152297/9107696802095391163023360000*c**6; 

-19261211351/5249191271475865190400000*~+*6; 

1295086893481/350296030849822737039360000*c*+6 
a(l)[ll = +6979807/7890198520135680000+c*+4 

+59807/57076088832000*~**2; 
a(l)[2] = -2633/1321205760000*~++2 

a(1)[3] = -104927/657516543344640000+~*+4 

a(1)[4] = -35064871627/1959698074684323004416000*c+*6 

-1742231923/1518863215126118400000*~**4 
-2019551572309/212300624757468325478400000*c++6; 

+5467599307/349946084765057679360000+c**6 
+9581/6115295232000+~*+2: 

+308129/184104632136499200*~**4 
-479/815372697600*~**2; 

+31/271790899200*~*+2 
a(1)[5] = 728404709377/48992451867108075110400000*c**6 

-4189117/2301307901706240000*~++4; 

-3486897487/381759365198244741120000*~*+6 
-61/5707608883200*C**2; 

a(1)[6] = 303697/295882444505088000+~**4 

a(1)[7] = -2312647/6903923705118720000*~**4 
+387185963/92788734596795596800000+~++6; 

-20126441/1428351366387990528000O*C**6; 

+2511673/7290543432605368320000+~+*6; 
a(l)[lO] = -12617861/216633290568845230080000*c**6; 

a(1)[12] = -660544553/2101776185098936422236160000*c*+6; 
a(2)[1] = -2579/17122826649600*~+*2 

201521/3375251589169152000+~**4 

a(1)[9] = -805171/182263585815134208000*C**4 

a(I)[ll] = 21583333/3502960308498227370393600*~**6; 

+491589127/76428224912688597172224000*~**6 
-1841839/45565896453783552000*~**4: 

a(2)[3] = -65239/2761569482047488000*~+*4 
-1243/11415217766400+~**2 
+42439477/8398706034361384304640C00*c+*6: 

41 = -1573447/33138833784569856000*~**4 
+17/570760888320+~*+2 
+25361387/44093206680397267599360000*~+*6; 

51 = -17/5707608883200*~++2 -. 
-496183/636265608663741235200000*~*+6 
+123371/1972549630033920000*~*+4; 

6) = -99619/95439841299561185280000+c++6 
-134809/433960918607462400O*C**4~ 

71 = 284983/262459563573793259520000*~+*6 
+106627/15188632151261184000*~*+4; 

81 = -44879/75219892558626816000*C++4 
-489287/1299799743413071380480000+~++6; 

a(2)[9] = 577519/9553528114086074646528000*~**6; 
a(2)[10] - -200047/36744338900331056332800000+c*+6; 
a(2)[ll] = 138031/431133576430551060971520000*c+*6; 

n = 6; 

37770754488218911/1468889340241944686772407500800000*c**7 
a ( o )  +1256573317516579/21017761850989364222361600000*~**5 

+38142227/1150653950853120000*c**3 
+18689/5707608883200+c; 

a(0)[2] - -126680105105857189/1468889340241944686772407500800000*c**7 
-33081041929399/200169160485612992593920000*C+*5 
-27230849/409121404747776000*~**3 
-12403/2853804441600*~; 

+7524455441/25921932204819087360000+c++5 
+17459459/230130790170624000+~**3 
+677/244611809280+c: 

a(0)[3] - 358884211898426713/1888572008882500311564523929600000*c**7 
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Table 11. (Continued) 

a(2)[1] = 81778377900855289/49942237568226119350261855027200000*c**7 
-574601707/31592354874623262720000000*~**5 .~ ~...... - - 
+10789/47563407360000*c 
-8276561/36163409883955200000*~**3; 

[2] = 2769522791323/1910705622817214929305600000*c**5 
+122430367/86792183721492480000*~**3 
-2293/14269022208000*~ 
-418067364188867689/86438488098852898875453210624000000*c**~7; 

-7334449/3020466620989440000*~**3 
-108314839499/30960507777130797465600000*~**5 

[3] = 29138255610767/3254154846074462075311179694080*c**7 

+139/2853804441600*c; 

+80621886389/17815437042584754585600000*c**5 

[4] = 75519049/36820926427299840000*c**3 
-952898546313047/82175627426122779679575244800000*~**7 

-1/126835752960*~; 

-30155546363/8165408644518012518400000*~**5 
-5651/5870683422720000*~**3+1/1902536294400*~; 

a(2)[5] = 6103004972873/550283219371357899640012800000*c**7 

a( 2) [ 6 J = -40905862011781/5079537409581765227446272000000*c**7 
+486446609/238599603248902963200000*~**5 
+29659/112717121716224000*~**3: 

[ 71 = -9492439541/12248112966777018777600000*~**5 

[8] = 491/162012076280119296*~**3 

[9] = 42609087071/66033986324562947956801536000*c**7 

1101 = 7389133/2123006247574683254784000*~**5 

+5235637371919/1164060656362487864623104000000*c**7 
-26167/632859672969216000*~**3; 

-5258088970489/2709086618443608121304678400000*C**7 
+26677361/133312794196212449280000*~**5; 

-26389637/779879846047842828288000*C**5; 
.~ 

-25665316613/157223776963245114182860800000*C**7; 

-21466513/125105725303508120371200000*~**5~ 
a(2)[11] = 337085538733/11005664387427157992800256000000*c**7 

a( 2) 121 = -1573189189931/3873993~6437435961346569011200000*c**7: 
a(2)[13] = 136373189873/396366964827191423414776627200000+c**7; 

a(3)[1] = 3154639/47253522248368128000*~**3 
a(2)[14) = -67657016129/4756403577926297080977319526400000*~**7; 

-296142128401597/403379611127980194752114982912000000*C**7 

-17/4994157772800*~; 

-409228973/20380859976716959245926400*~**5 
-418343/3000223634817024000*~**3 

+100361837/24496225933554037555200000+~**5 

a(3)[2] = 153258125266189/92201053972109758800483424665600000*c**7 

+1/422785843200*c; 

+64962211/1763728267215890703974400*~**5 

a(3)[3] = 2564083/16569416892284928000*~**3 
-127791991/106999514877764036041113600000*C**7 

-1/1712282664960*~; 

-449009/4602615803412480000*~**3 
-713772959/24496225933554037555200000*~**5 

a(3)[4] = -644799193/400205977724623927010918400000*c**7 

+1/22830435532800*c: 

+3466147/1749730423825288396800000*~**5 
+38688630727/9312485250899902916984832000000*c**7: 

-122258375731/31928520860228238572519424000000*~**7 

a(3][5] = 250247/7232681976791040000*~**3 

a(3)[6] = 53369233/3817593651982447411200000*c**5 

-27719/4339609186074624000*~**3; 

-16596103/1516433033981916610560000*~**5 
a(3)[7] = 5867/11966801088872448000*~**3 

+21303467/11464233736903289575833600000*c**7 ; 
3)[8] = 106661749/28306749967662443397120000*~**5 

-3387067433/6847968952176898306631270400000*~**7~ 
3 ) [ 9 ]  = -1067747/1705987163229656186880000*~**5 

3)[10] 3 -169730633/19565625577648280876089344000000*C**7 
+48383059/660339863245629479568015360000*c**7; 

+34644671/8492024990298733019136Q0000*c**5; 
3 ) [ 1 1 ]  = 249410323/182938599151011426191435366400000*~**7: 

3)[13] = 125659/47397727961852960422326435840000*~**7; 
3)[12] - -31383631/253299598824477359341987430400000*C**7~ 
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Table 111. Functions 41, 42 in polar co-ordinates r, 0 related to z, z* 

40 = 0 
C 

41 = ( 1  - r 2 ) 2 -  r cos 8, 

42 = ( 1  - r2)’. 

25 3 

C2 

2 ’ 5  x 3 3  x 5 
( - r4 - 2r2  + 17)rZ  sin 2 0  

Table IV. Functions wo,  wl, w 2  in polar co-ordinates r, 0 related to z ,  z* 

C L  

28 x 3 2  
w1 = ( I  - r z ) -  (r4 - 3r2 + 3)r s inQ 

C c3 
( 1  - r 2 ) 3 (  - l o r4  + 32r2 - 37)  w2 = (1 - .’I[( - ~ ( I  - r2)’ + 

27 x 32 217 34 5 

( -  48r8 + 302r6 -958r4  + 1457r2 - 9 2 3 )  
+ (‘(-3r2+5)+ c 3  

2‘7 x 34 x 5 2 x 7  

There are very large numbers involved in the denominators. They come from the iterated 
powers 2’ and Z4 in the operators A and A2 of (20) and (21) and from the integration of powers of z 
and z*.  

The functions ol, w2 and 4,, 42 are given in Tables 111 and IV for comparison with B a r ~ a . ~  
One has thereby to notice that his constant c is in the present notation is equal to - 4c. The 
second-order perturbation of the axial flow, w 2 ,  has been calculated only partly by Barua; in the 
notation 

he computed the termf, ( r ) ,  which contributes to the total flow rate. The computation of the other 
term is tedious if performed by hand but is straightforward by computer. 

A detailed physical analysis of the flow will be given in a separate publication. It should be 
stressed that such an analysis would not be possible without the use of computer algebra. The 
present paper illustrates the power of computer algebra as a tool of analytic fluid mechanics. 

w2(r, 0) = f i ( r )  +”h(r)cos2~ (94) 
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